Informação, Dados e Tecnologia

Guilherme Ataíde Dias

Universidade Federal da Paraíba (UFPB) | guilhermeataide@ccsa.ufpb.br | https://orcid.org/0000-0001-6576-0017 | https://lattes.cnpq.br/9553707435669429

Graduado em Ciência da Computação pela Universidade Federal da Paraíba – UFPB Campus II (1990), Bacharel em Direito pelo Centro Universitário de João Pessoa – UNIPE (2010), Mestre em Organization & Management pela Central Connecticut State University – CCSU (1995), Doutor em Ciência da Informação (Ciências da Comunicação) pela Universidade de São Paulo – USP (2003) e Pós-Doutor pela UNESP (2011). Atualmente é professor Associado III na Universidade Federal da Paraíba, lotado no Departamento de Ciência da Informação. Está envolvido com a Pós-Graduação através do Programa de Pós-Graduação em Ciência da Informação e Programa de Pós-Graduação em Administração, ambos da UFPB. Tem interesse de pesquisa nas seguintes temáticas: Representação do Conhecimento; Arquitetura da Informação; Segurança da Informação; Tecnologias da Informação e Comunicação; Informação em Saúde; Redes Sociais; Software Livre; Direito, Ética e Propriedade Intelectual no Ciberespaço; Gestão de Dados Científicos; Informação Jurídica; Atualmente é Bolsista de Produtividade em Pesquisa (PQ) do CNPq.

Moisés Lima Dutra

Universidade Federal de Santa Catarina (UFSC) | moises.dutra@ufsc.br | https://orcid.org/0000-0003-1000-5553 | https://lattes.cnpq.br/1973469817655034

Professor Adjunto da Universidade Federal de Santa Catarina, Departamento de Ciência da Informação. Doutor em Computação pela Universidade de Lyon 1, França (2009). Mestre em Engenharia Elétrica, subárea Automação e Sistemas (2005) e Bacharel em Computação (1998) pela Universidade Federal de Santa Catarina. Suas atuais linhas de pesquisa estão relacionadas a Inteligência Artificial Aplicada (Machine Learning, Deep Learning, Web Semântica, Linked Data) e a Data Science (Text Mining, Big Data, IoT). Está vinculado ao grupo de pesquisa ITI-RG (Inteligência, Tecnologia e Informação - Research Group).

Fábio Mosso Moreira

Universidade Estadual Paulista (UNESP) | fabio.moreira@unesp.br | https://orcid.org/0000-0002-9582-4218 | https://lattes.cnpq.br/1614493890723021

Graduado em Administração de Empresas pela Faculdade de Ciências e Engenharia (UNESP/Tupã). Mestrado concluído em Ciência da Informação - Faculdade de Filosofia e Ciências (UNESP/Marília). Doutorado em andamento Programa de Pós-Graduação em Ciência da Informação - Faculdade de Filosofia e Ciências (UNESP/Marília). Atua como membro do Grupo de Pesquisa Novas Tecnologias em Informação - GPNTI (UNESP/Marília) e Grupo de Pesquisa Tecnologia de Acesso a Dados -GPTAD (UNESP / Tupã). Editor de Conteúdo da Revista Eletrônica Competências Digitais para Agricultura Familiar (RECoDAF). Possui Habilidade Profissional Técnica em Informática pela ETEC Massuyuki Kawano - Centro Paula Souza de Tupã. Tem experiência profissional na área de Sistemas de Informação ERP para Operações de Logística. Atualmente realiza pesquisas com foco na investigação de temas ligados à utilização de recursos digitais para a disponibilização e acesso a dados governamentais de Políticas Públicas no âmbito dos pequenos produtores.

Fernando de Assis Rodrigues

Universidade Federal do Pará (UFPA) | fernando@rodrigues.pro.br | https://orcid.org/0000-0001-9634-1202 | https://lattes.cnpq.br/5556499513805582

Professor Adjunto no Instituto de Ciências Sociais Aplicadas, lotado na Faculdade de Arquivologia da Universidade Federal do Pará. Doutor e Mestre em Ciência da Informação pela UNESP - Universidade Estadual Paulista. Especialista em Sistemas para Internet pela UNIVEM - Centro Universitário Eurípides de Marília. Bacharel em Sistemas de Informação pela USC - Universidade do Sagrado Coração. Membro dos grupos de pesquisa GPNTI - Novas Tecnologias em Informação e GPTAD - Tecnologias de Acesso a Dados (UNESP), GPIDT - Informação, Dados e Tecnologia (USP) e GPDM - Dados e Metadados (UFSCar). Editor do periódico RECoDAF - Revista Eletrônica Competências Digitas para a Agricultura Familiar. Atua nas áreas da Ciência da Informação e da Ciência da Computação, com ênfase em Engenharia de Software, Bancos de Dados, Tecnologia de Informação e Comunicação e Ambientes Informacionais Digitais, focado principalmente nos seguintes temas: Coleta de Dados, Dados, Acesso a Dados, Serviços de Redes Sociais Online, Linked Data, Linked Open Data, Metadados, Internet Applications, Linguagens de Programação, Banco de Dados e Bases de Dados, Privacidade, Governo eletrônico, Open Government Data e Transparência Pública.

Ricardo César Gonçalves Sant'Ana

Universidade Estadual Paulista (UNESP) | ricardo.santana@unesp.br | https://orcid.org/0000-0003-1387-4519 | https://lattes.cnpq.br/1022660730972320

Professor Associado da Universidade Estadual Paulista - UNESP, Faculdade de Ciências e Engenharias - FCE, Campus de Tupã, em regime de dedicação exclusiva, onde é Presidente da Comissão de Acompanhamento e Avaliação dos cursos de Graduação - CAACG, Coordenador Local do Centro de Estudos e Práticas Pedagógicas - CENEPP e Ouvidor Local. Professor do Programa de Pós-Graduação em Ciência da Informação da Universidade Estadual Paulista, Campus de Marília. Graduado em Matemática e Pedagogia, Mestrado em Ciência da Informação (2002), Doutorado em Ciência da Informação (2008) e Livre-Docente em Sistemas de Informações Gerenciais pela UNESP (2017). Possui especializações em Orientação à Objetos (1996) e Gestão de Sistemas de Informação (1998). Parecerista ad hoc de periódicos e de agências de fomento. Lider do Grupo de Pesquisa - Tecnologias de Acesso a Dados (GPTAD) e membro do Grupo de Pesquisa - Novas Tecnologias em Informação GPNTI. Tem experiência na área de Ciência da Computação, atualmente realiza pesquisas com foco em: ciência da informação e tecnologia da informação, investigando temas ligados ao Ciclo de Vida dos Dados, Transparência e ao Fluxo Informacional em Cadeias Produtivas. Atuou como professor na Faccat Faculdade de Ciências Contábeis e Administração de Tupã, onde coordenou curso de Administração com Habilitação em Análise de Sistemas por dez anos e o curso de Licenciatura em Computação. Atuou no setor privado como consultor, integrador e pesquisador de novas tecnologias informacionais de 1988 a 2004.


Organizadores

Guilherme Ataíde Dias

Universidade Federal da Paraíba (UFPB) | guilhermeataide@ccsa.ufpb.br | https://orcid.org/0000-0001-6576-0017 | https://lattes.cnpq.br/9553707435669429

Graduado em Ciência da Computação pela Universidade Federal da Paraíba – UFPB Campus II (1990), Bacharel em Direito pelo Centro Universitário de João Pessoa – UNIPE (2010), Mestre em Organization & Management pela Central Connecticut State University – CCSU (1995), Doutor em Ciência da Informação (Ciências da Comunicação) pela Universidade de São Paulo – USP (2003) e Pós-Doutor pela UNESP (2011). Atualmente é professor Associado III na Universidade Federal da Paraíba, lotado no Departamento de Ciência da Informação. Está envolvido com a Pós-Graduação através do Programa de Pós-Graduação em Ciência da Informação e Programa de Pós-Graduação em Administração, ambos da UFPB. Tem interesse de pesquisa nas seguintes temáticas: Representação do Conhecimento; Arquitetura da Informação; Segurança da Informação; Tecnologias da Informação e Comunicação; Informação em Saúde; Redes Sociais; Software Livre; Direito, Ética e Propriedade Intelectual no Ciberespaço; Gestão de Dados Científicos; Informação Jurídica; Atualmente é Bolsista de Produtividade em Pesquisa (PQ) do CNPq.

Moisés Lima Dutra

Universidade Federal de Santa Catarina (UFSC) | moises.dutra@ufsc.br | https://orcid.org/0000-0003-1000-5553 | https://lattes.cnpq.br/1973469817655034

Professor Adjunto da Universidade Federal de Santa Catarina, Departamento de Ciência da Informação. Doutor em Computação pela Universidade de Lyon 1, França (2009). Mestre em Engenharia Elétrica, subárea Automação e Sistemas (2005) e Bacharel em Computação (1998) pela Universidade Federal de Santa Catarina. Suas atuais linhas de pesquisa estão relacionadas a Inteligência Artificial Aplicada (Machine Learning, Deep Learning, Web Semântica, Linked Data) e a Data Science (Text Mining, Big Data, IoT). Está vinculado ao grupo de pesquisa ITI-RG (Inteligência, Tecnologia e Informação - Research Group).

Fábio Mosso Moreira

Universidade Estadual Paulista (UNESP) | fabio.moreira@unesp.br | https://orcid.org/0000-0002-9582-4218 | https://lattes.cnpq.br/1614493890723021

Graduado em Administração de Empresas pela Faculdade de Ciências e Engenharia (UNESP/Tupã). Mestrado concluído em Ciência da Informação - Faculdade de Filosofia e Ciências (UNESP/Marília). Doutorado em andamento Programa de Pós-Graduação em Ciência da Informação - Faculdade de Filosofia e Ciências (UNESP/Marília). Atua como membro do Grupo de Pesquisa Novas Tecnologias em Informação - GPNTI (UNESP/Marília) e Grupo de Pesquisa Tecnologia de Acesso a Dados -GPTAD (UNESP / Tupã). Editor de Conteúdo da Revista Eletrônica Competências Digitais para Agricultura Familiar (RECoDAF). Possui Habilidade Profissional Técnica em Informática pela ETEC Massuyuki Kawano - Centro Paula Souza de Tupã. Tem experiência profissional na área de Sistemas de Informação ERP para Operações de Logística. Atualmente realiza pesquisas com foco na investigação de temas ligados à utilização de recursos digitais para a disponibilização e acesso a dados governamentais de Políticas Públicas no âmbito dos pequenos produtores.

Fernando de Assis Rodrigues

Universidade Federal do Pará (UFPA) | fernando@rodrigues.pro.br | https://orcid.org/0000-0001-9634-1202 | https://lattes.cnpq.br/5556499513805582

Professor Adjunto no Instituto de Ciências Sociais Aplicadas, lotado na Faculdade de Arquivologia da Universidade Federal do Pará. Doutor e Mestre em Ciência da Informação pela UNESP - Universidade Estadual Paulista. Especialista em Sistemas para Internet pela UNIVEM - Centro Universitário Eurípides de Marília. Bacharel em Sistemas de Informação pela USC - Universidade do Sagrado Coração. Membro dos grupos de pesquisa GPNTI - Novas Tecnologias em Informação e GPTAD - Tecnologias de Acesso a Dados (UNESP), GPIDT - Informação, Dados e Tecnologia (USP) e GPDM - Dados e Metadados (UFSCar). Editor do periódico RECoDAF - Revista Eletrônica Competências Digitas para a Agricultura Familiar. Atua nas áreas da Ciência da Informação e da Ciência da Computação, com ênfase em Engenharia de Software, Bancos de Dados, Tecnologia de Informação e Comunicação e Ambientes Informacionais Digitais, focado principalmente nos seguintes temas: Coleta de Dados, Dados, Acesso a Dados, Serviços de Redes Sociais Online, Linked Data, Linked Open Data, Metadados, Internet Applications, Linguagens de Programação, Banco de Dados e Bases de Dados, Privacidade, Governo eletrônico, Open Government Data e Transparência Pública.

Ricardo César Gonçalves Sant'Ana

Universidade Estadual Paulista (UNESP) | ricardo.santana@unesp.br | https://orcid.org/0000-0003-1387-4519 | https://lattes.cnpq.br/1022660730972320

Professor Associado da Universidade Estadual Paulista - UNESP, Faculdade de Ciências e Engenharias - FCE, Campus de Tupã, em regime de dedicação exclusiva, onde é Presidente da Comissão de Acompanhamento e Avaliação dos cursos de Graduação - CAACG, Coordenador Local do Centro de Estudos e Práticas Pedagógicas - CENEPP e Ouvidor Local. Professor do Programa de Pós-Graduação em Ciência da Informação da Universidade Estadual Paulista, Campus de Marília. Graduado em Matemática e Pedagogia, Mestrado em Ciência da Informação (2002), Doutorado em Ciência da Informação (2008) e Livre-Docente em Sistemas de Informações Gerenciais pela UNESP (2017). Possui especializações em Orientação à Objetos (1996) e Gestão de Sistemas de Informação (1998). Parecerista ad hoc de periódicos e de agências de fomento. Lider do Grupo de Pesquisa - Tecnologias de Acesso a Dados (GPTAD) e membro do Grupo de Pesquisa - Novas Tecnologias em Informação GPNTI. Tem experiência na área de Ciência da Computação, atualmente realiza pesquisas com foco em: ciência da informação e tecnologia da informação, investigando temas ligados ao Ciclo de Vida dos Dados, Transparência e ao Fluxo Informacional em Cadeias Produtivas. Atuou como professor na Faccat Faculdade de Ciências Contábeis e Administração de Tupã, onde coordenou curso de Administração com Habilitação em Análise de Sistemas por dez anos e o curso de Licenciatura em Computação. Atuou no setor privado como consultor, integrador e pesquisador de novas tecnologias informacionais de 1988 a 2004.


Reconhecimento de entidades nomeadas em relatórios de inteligência financeira

Páginas: 291 - 302

Autores

Jairo Santana

Universidade Federal de Santa Catarina (UFSC) | jairo.santana@gmail.com |

Diefferson K. Moro

Universidade Federal de Santa Catarina (UFSC) | differson.moro@gmail.com |

Graduação em Tecnologias de Informação e Comunicação – UFSC Araranguá

Rogério de Aquino Silva

Universidade Federal de Santa Catarina (UFSC) | rogerriomp@gmail.com |

Vinicius Faria Culmant Ramos

Universidade Federal de Santa Catarina (UFSC) | v.ramos@ufsc.br | https://orcid.org/0000-0002-8319-743X | https://lattes.cnpq.br/0442142220296336

Professor Adjunto da Universidade Federal de Santa Catarina (UFSC) campus Araranguá. Possui graduação em Bacharelado em Ciência da Computação pela UFRJ, Mestrado em Engenharia de Sistemas e Computação pela COPPE/UFRJ e Doutorado em Engenharia de Sistemas e Computação com acordo de co-tutela entre a COPPE/UFRJ e a Universidade Tecnlógica de Eindhoven (HOL). Atualmente, trabalha com pesquisa e desenvolvimento de metodologias e ferramentas tecnológicas para o tratamento e análise de grande quantidade de dados (Big Data) em redes sociais. Suas pesquisas também são voltadas para o ensino de programação de computadores e o desenvolvimento de ambientes construtivistas de aprendizagem presenciais e a distância com o uso de novas tecnologias digitais da informação e comunicação. Atua principalmente nos seguintes temas: tecnologia educacional, educação a distância, novas tecnologias da Web, sistemas adaptativos, avaliação de sistemas adaptativos, ensino de programação e tratamento e análise de big data.

Gustavo Medeiros de Araujo

Universidade Federal de Santa Catarina (UFSC) | gustavo.araujo@ufsc.br | https://orcid.org/0000-0003-0572-6997 | https://lattes.cnpq.br/2609254559240670

Doutor em Engenharia de Automação e Sistemas pela UFSC (2013) e mestre em Ciência da Computação pela UFSC (2007). Tem experiência na área de Ciência da Computação e Automação, com ênfase em Data Science, Machine e Deep Learning e Cyber-Physical System. Possui duas linhas de pesquisa: i) Aplicações com Data Science, Machine e Deep Learning e ii) Protocolos de Redes de Sensores Sem Fio (RSSF) e MANTEs. Além da formação acadêmica, possui experiência na indústria de software desenvolvendo sistemas de informação para o governo federal e sistemas para a indústria de automação. Atualmente, é professor Adjunto A2 da Universidade Federal de Santa Catarina, membro do Laboratório de Integração Software e Hardware (LISHA) e membro do Laboratório de Engenharia e Ciência de Dados (LECID).

Resumo

O reconhecimento de entidades nomeadas é uma das subáreas do processamento de linguagem natural, mineração de textos e aprendizado de máquinas. Todas essas áreas fazem parte da grande área da inteligência artificial, muito utilizada em diversos problemas práticos do nosso dia a dia. Uma das competências da Polícia Federal é a investigação de crimes financeiros, em especial, a lavagem de dinheiro. Dentre os problemas encontrados na investigação policial, destacamos a análise dos Relatórios de Inteligência Financeira (RIF), escritos em português do Brasil, que são gerados pelo Conselho de Controle de Atividades Financeiras. O objetivo desta análise é identificar os atores envolvidos em esquemas de lavagem de dinheiro, mas, dependendo da complexidade do esquema, a identificação, por exemplo, desses atores e suas relações (sociedades, parentescos, “laranjas”, empresas “fantasmas”, etc) em um relatório, pode demandar um tempo significativo do policial envolvido na investigação. Este trabalho, portanto, visa apresentar resultados iniciais da automatização do reconhecimento de entidades nomeadas, importantes para a investigação policial, em RIFs. Identificamos, na literatura, uma grande lacuna para esse tipo de solução em textos em português. Os nossos resultados, ainda preliminares, demonstram que as ferramentas e os dados utilizados para o treinamento ainda precisam ser melhor trabalhados para que estes sejam mais significativos. Pudemos perceber que com poucos dados de treinamento conseguimos aumentar a precisão do reconhecimento de entidades de 14 para 27% e, em um teste com o framework RASA NLU, aumentamos a precisão para 60,98% de entidades reconhecidas corretamente, muito aquém dos 90% encontrados na literatura para outros idiomas.

Palavras-chave: Reconhecimento de Entidades Nomeadas. Mineração de Texto. Relatório de Inteligência Financeira. Processamento de Linguagem Natural.

Abstract

The named entity recognition is a subarea of natural language processing, text mining, and machine learning. These areas are part of the artificial intelligence area, very used in different kind of daily practical problems. One of the competencies of the Brazilian Federal Police is to investigate financial crimes, especially money laundering. Among the problems encountered in the police investigation, we highlight the analysis of the Financial Intelligence Reports, written in Brazilian Portuguese, which are generated by the Financial Activities Control Council. The aim of this analysis is to identify the actors involved in money laundering schemes, but depending on the complexity of the scheme, the identification, for example, of these actors and their relationships (societies, kinship, "oranges", "ghost" companies, etc.) in a report, may require significant time from the police man involved in the investigation. The main objective of this paper is to present initial results of the automation of named entity recognition, important for the police investigation, in Financial Intelligence Reports. We identified, in the literature, a large gap for this type of solution in Portuguese texts. Our preliminary results demonstrate that the tools and data used for training still need to be better explored to make them more meaningful. We could see that, with a few training dataset, we were able to increase the accuracy of the recognition of entities from 14 to 27% and, using the Rasa NLU framework, we got a 60.98% precision, very below the 90% found in the literature for other languages.

Keywords: Named Entity Recognition. Text Mining. Financial Intelligence Report. Natural Processing Language.


Apoio

Universidade Federal da Paraíba (UFPB)Universidade Estadual Paulista (UNESP)Universidade Federal de Santa Catarina (UFSC)Revista Eletrônica Competências Digitais para Agricultura Familiar (RECoDAF)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)